Characterization of the chaos-hyperchaos transition based on return times.

نویسندگان

  • A N Pavlov
  • O N Pavlova
  • Y K Mohammad
  • J Kurths
چکیده

We discuss the problem of the detection of hyperchaotic oscillations in coupled nonlinear systems when the available information about this complex dynamical regime is very limited. We demonstrate the ability of diagnosing the chaos-hyperchaos transition from return times into a Poincaré section and show that an appropriate selection of the secant plane allows a correct estimation of two positive Lyapunov exponents (LEs) from even a single sequence of return times. We propose a generalized approach for extracting dynamics from point processes that allows avoiding spurious identification of the dynamical regime caused by artifacts. The estimated LEs are nearly close to their expected values if the second positive LE is essentially different from the largest one. If both exponents become nearly close, an underestimation of the second LE may be obtained. Nevertheless, distinctions between chaotic and hyperchaotic regimes are clearly possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit.

Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transitions in coupled nonlinear systems [E. G. Souza et al., "Using recurrences to characterize the hyperchaos-chaos transition," Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are combined with a significance test based on twin surrogates to identify such a transition in a fourth-order Lorenz-...

متن کامل

Hyperchaos in the Post-Breakdown Regime of p-Germanium

p-Ge electrically driven into the post-breakdown regime at liquid-He temperatures produces voltage oscillations which can be attributed to the formation of a chaotic attractor. Under variation of an applied magnetic field, a change in this attractor takes place which apparently reflects an increase in attractor dimensionality. A sequence of phase plots is presented which is interpreted as a tra...

متن کامل

Role of multistability in the transition to chaotic phase synchronization.

In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mo...

متن کامل

Bicritical scaling behavior in unidirectionally coupled oscillators.

We study the scaling behavior of period doublings in a system of two unidirectionally coupled parametrically forced pendulums near a bicritical point where two critical lines of period-doubling transition to chaos in both subsystems meet. When crossing a bicritical point, a hyperchaotic attractor with two positive Lyapunov exponents appears, i.e., a transition to hyperchaos occurs. Varying the ...

متن کامل

Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo.

We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2015